Name						
1 What is th	a tamparatur		ake a Thunder osphere at thes		zale?	
1. What is un	ie temperatur	e of the attic	ospiicie at mes	e pressure le	/CIS!	
1010 mb	1000mb	900 mb	700 mb	500 mb	300 mb	
2. At which l	evels would	you expect tl	nere to be moi	st air?		
3. At what pr	essure level i	s the cloud b	pase?			
4. At what pr	essure level i	s the cloud t	op?			
5.How can ar	n air parcel ri	se to make a	thunderstorm	when it is co	oling off?	
6.Which of the	nese can caus	e the air to r	ise? Circle all	that apply		
low pressure	high _l	pressure	a cold front	the s	sea breeze	
7. At the lev	el of free con	vection the	air parcel is no	w (colder/wa	rmer) than the env	ironment.
8. Air parcels atmosphere.	are able to r	ise because 1	they are (coole	er/warmer) tha	an the surrounding	
9. If a parcel it rises 3 km			of 26°C at the	surface, wha	t will its temperatu	re be after
9. The point in (vaporization			the air parcel b	ecomes a clo	ud is known as the	lifting
_		*	has a temperarere. What will		lifted from 1500 n are be?	in the
11. At what p	ressure level	will the air	parcel stop ris	ng?		

12. At what pressure level is the cloud top?

14. At what level did the air parcel stop rising?

13. What happened to the cloud?

15. Why did the air parcel stop rising?

16. What is the level of the new cloud top?

17. What happened to the cloud?
18. The cloud was able to rise because air parcel was (warmer/cooler) than the surrounding atmosphere.
19. Thunderstorms can develop if the atmosphere is (stable/unstable)
20. What happened when we increased the 850 mb temperature?
21. Why do you think this happened?
22. A layer in which the atmospheric temperature increases with height is known as an (instability/inversion)
23. What happened to the cloud?
24. Why do you think this happened?
25. The air temperature and pressure in two cities are both 20C and 1010 mb. City A has a dew point of 5C while City B has a dew point of 17C.
a. Which city has more moisture in the atmosphere?
b. In which city would you expect very shallow cumulus clouds?
26. What are some of the necessary conditions for thunderstorms and severe weather to develop?